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Combinations of Biocontrol Agents for Management of Plant-Parasitic
Nematodes and Soilborne Plant-Pathogenic Fungi’

SusaN L. F. MEYER? AND DANIEL P. ROBERTS®

Abstract: Numerous microbes are antagonistic to plant-parasitic nematodes and soilborne plant-pathogenic fungi, but few of these
organisms are commercially available for management of these pathogens. Inconsistent performance of applied biocontrol agents
has proven to be a primary obstacle to the development of successful commercial products. One of the strategies for overcoming
inconsistent performance is to combine the disease-suppressive activity of two (or more) beneficial microbes in a biocontrol
preparation. Such combinations have potential for more extensive colonization of the rhizosphere, more consistent expression of
beneficial traits under a broad range of soil conditions, and antagonism to a larger number of plant pests or pathogens than strains
applied individually. Conversely, microbes applied in combination also may have antagonistic interactions with each other. In-
creased, decreased, and unaltered suppression of the target pathogen or pest has been observed when biocontrol microbes have
been applied in combination. Unfortunately, the ecological basis for increased or decreased suppression has not been determined
in many cases and needs further consideration. The complexity of interactions involved in the application of multiple organisms
for biological control has slowed progress toward development of successful formulations. However, this approach has potential for
overcoming some of the efficacy problems that occur with application of individual biocontrol agents.
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Numerous microbes are antagonistic to plant-
parasitic nematodes and plant-pathogenic fungi, and
some of these organisms reduce pathogen populations
and(or) disease (Adams and Ayers, 1982; Alabouvette
et al., 1993; Chen and Dickson, 1998; Harman, 1991;
Kerry, 1998; King and Parke, 1993; Lumsden and
Locke, 1989; Marois et al., 1982; Nelson, 1988; Ro-
driguez-Kabana and Morgan-Jones, 1988; Sayre, 1986;
Siddiqui and Mahmood, 1996a, 1999; Sikora and Hoff-
mann-Hergarten, 1993; Stirling, 1991; Weller and
Cook, 1983). However, biocontrol microbes often are
not thought of as acceptable alternatives for pesticides.
Reasons for this include lack of broad spectrum activity,
inconsistent performance, and slower (and sometimes
less complete) action by the biocontrol agents when
compared with pesticides. Additionally, only a few of
these organisms have been developed into commercial
biocontrol products available to the grower. This is be-
cause the leap from recognition of a potentially useful
biocontrol agent to mass culture, formulation, wide-
scale testing, shelflife improvement, registration, mar-
keting, and delivery has evidently proved so great that
research has not resulted in many commercial successes
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for management of plant-pathogenic fungi and nema-
todes. Commercially available biocontrol products for
soilborne plant-pathogenic fungi include microbes
such as Bacillus, Burkholderia, Coniothyrium, Fusarium,
Gliocladium, Pythium, Streptomyces, Talaromyces, and
Trichoderma (Fravel, 2000). For nematode manage-
ment, even fewer commercial formulations are avail-
able; examples of products registered for biocontrol
include formulations containing Burkholderia and Paeci-
lomyces.

Of the problems listed above, inconsistent field per-
formance often restricts commercial development of
biocontrol agents. This inconsistency can be caused by
a large number of biotic and abiotic factors. Biotic fac-
tors include interactions with nontarget organisms,
damage caused by nontarget pathogens and pests, de-
gree of rhizosphere and (or) soil colonization by a bio-
control agent, initial population levels of the target or-
ganism, susceptibility of the host plant to the target
pathogen or pest, host plant species, and host plant
cultivar (Dufly et al., 1996; Hebbar et al., 1998; Kerry,
1998; Kerry and Bourne, 1996; Pierson and Weller,
1994; Sikora and Hoffmann-Hergarten, 1993; Stirling,
1991). Abiotic factors affecting efficacy of biocontrol
agents include climate, and physical and chemical com-
position of the rhizosphere (Ownley et al., 1992; Sikora
and Hoffmann-Hergarten, 1993; Stirling, 1991). With
so many factors affecting the activity of beneficial mi-
crobes, it is not surprising that an individual biocontrol
agent is differentially active in various soil environ-
ments.

One approach to overcoming inconsistent perfor-
mance under varying environmental conditions is to
include two or more biocontrol agents in a preparation.



2 Journal of Nematology, Volume 34, No. 1, March 2002

Potential advantages of biocontrol agents applied in
combination include: (i) multiple modes of action
against the target pathogen or nematode; (ii) ability to
affect more than one stage of the life cycle of the target
organism; (iii) activity of microbes during different
times in the growing season; (iv) increased consistency
in performance over a wider range of soil conditions,
stemming from the different environmental niches of
the applied microbes; and (v) potential to select organ-
isms that affect more than one plant pathogen or pest,
thus increasing the spectrum of uses for the product
(Crump, 1998; Larkin et al., 1998; Lemanceau and Al-
abouvette, 1991; Lemanceau et al., 1992; Pierson and
Weller, 1994; Siddiqui and Mahmood, 1996a).

This paper considers studies that have been done
with living microbes (bacteria and fungi) that are ap-
plied in combination to the spermosphere or rhizo-
sphere and specifically designated as biocontrol agents.
The discussion does not include amendments, prod-
ucts designed to increase activity of organisms already
present in the soil, living agents not specifically regis-
tered for biocontrol, root-nodulating bacteria, or natu-
ral products derived from microbes.

Examples of combinations of biocontrol agents for manage-
ment of plant parasitic nematodes: A number of research
investigations indicate that biocontrol combinations
may have a future for management of plant-parasitic
nematodes. In these studies, certain microbe combina-
tions resulted in increased plant vigor or yield, and(or)
reduction of nematode populations or penetration on
roots, compared with individual applications of the bio-
control agents (de Leij et al., 1992; Duponnois et al.,
1998; Gautam et al., 1995; Hojat Jalali et al., 1998; Khan
et al., 1997; Maheswari and Mani, 1988; Perveen et al.,
1998; Siddiqui et al., 1999a, 1999b; Siddiqui and Hu-
sain, 1991; Siddiqui and Mahmood, 1993, 1995a,
1995b, 1996b; Sosamma and Koshy, 1997; Vidya and
Reddy, 1998; Youssef and Ali, 1998; Zaki and Magbool,
1992). The effects on nematode populations included
suppression in numbers of females, eggs, egg masses,
juveniles, or galls.

Root-knot nematodes (Meloidogyne spp.) have been
the subject of many of the studies on biocontrol com-
binations. This research has resulted in the identifica-
tion of a number of successful biocontrol combinations
that act against nematodes in this genus. In one study,
the bacterium Bacillus subtilis and the fungus Paecilomy-
ces lilacinus were tested for suppression of Meloidogyne
incognita on tomato in pots containing steamed soil
(Gautam et al., 1995). Alone or combined, the mi-
crobes increased plant height and weight and sup-
pressed numbers of root galls, females, eggs, and sec-
ond-stage juveniles (J2). However, the combination of
these two biocontrol agents suppressed nematode
populations beyond application of agents individually.
There was some increase of plant height and weight
over individual applications as well, although the com-

bination did not have a substantial overall effect on
plant vigor compared to P. lilacinus alone. In another
investigation, tomato seedlings were planted into pots
containing an unsterilized peat/sand/compost mix.
The biocontrol agents tested were the fungus Verticil-
lium chlamydosporium and the bacterium Pasteuria pen-
etrans. Individual application of these microbes gener-
ally reduced root galling. However, a combination of
the two organisms caused the largest reduction in gall-
ing. Number of female nematodes was not affected by
any biocontrol treatment, but individual and combined
agents decreased numbers of eggs and J2, with an en-
hanced effect by the combination on suppression of
nematode populations after longer growing periods
(de Lejj et al., 1992). The nematode-trapping fungus
Arthrobotrys oligospora was tested with each of 11 strains
of bacteria—Pseudomonas mendocina, Enterobacter cloacae,
Bacillus licheniformis, and several unidentified strains—
for effects on Meloidogyne mayaguensis on tomato in au-
toclaved soil. Numbers of ]2 were suppressed with three
of the combinations, all of which included A. oligospora
and different unidentified bacteria (Duponnois et al.,
1998). These same combinations did not result in the
highest plant biomass.

Combinations of biocontrol agents have not been
tested as frequently against cyst nematodes (Heterodera
spp.). However, studies demonstrating enhanced effi-
cacy with combinations have been reported. For ex-
ample, three fungi (Embellisia chlamydospora, V. chla-
mydosporium, and a sterile fungus) were tested for ef-
fects on Heterodera schachtii on sugar beet in autoclaved
soil (Hojat Jalali et al., 1998). In this growth-chamber
experiment, none of the fungi applied individually sup-
pressed the number of females or cysts in pots, nor did
the Embellisia-Verticillium combination. However, combi-
nations of either Embellisia or Verticillium with the sterile
fungus significantly suppressed numbers of females and
cysts.

Studies have been conducted in which no enhanced
benefits were observed with combinations of biocontrol
agents. For example, the fungi Hirsutella rhossiliensis and
V. chlamydosporium, applied against Meloidogyne hapla on
lettuce, were effective in reducing J2 numbers in seed-
lings when applied alone or in combination (Viaene
and Abawi, 2000). However, combining the two fungi
did not enhance activity against M. hapla when com-
pared with individual application of these biocontrol
agents. The individual fungi and their combination did
not affect lettuce weight, nematode egg production, or
root galling at the highest nematode inoculum level.
Zaki and Magbool (1991) found that while the biocon-
trol agents P. penetrans, P. lilacinus, Talaromyces flavus,
and B. subtilis generally reduced root-knot nematode
indices, combinations were not more effective than in-
dividual application of these biocontrol agents.

While some microbe combinations enhance or have
no significant impact on biological control, other com-



binations result in decreased biocontrol. The fungus
Trichoderma virens and bacteria from the Burkholderia
cepacia complex are sold commercially as the biocontrol
products Soilgard (ThermoTrilogy Corp., Columbia,
MD) and Deny (Stine Microbial Products, Madison,
WI), respectively. Strains of these organisms were found
to produce extracellular factors in vitro that decreased
M. incognita egg hatch and ]2 mobility (Meyer et al.,
2000). In greenhouse studies, individual application of
the microbes as seed coats followed by root drenches
suppressed root-knot nematode populations (M. incog-
nita) on bell pepper compared with untreated plants.
In contrast, combinations of 7. wvirens with the bacteria
were not as effective. Nematode populations (eggs + ]2
per g of root) on plants treated with B. cepacia-T. virens
combinations were not significantly different from
those on the control plants (Meyer et al., 2001). Incom-
patibility among biocontrol organisms has been ob-
served in other studies. Bacillus thuringiensis, Paecilomyces
marquandii, Streptomyces costaricanus, and a B. thuringien-
sis/S. costaricanus combination were applied as suspen-
sions to soil and studied for effects on M. hapla on
lettuce (Chen et al., 2000). Each of the biocontrol
agents, applied individually, reduced egg numbers in
both methyl bromide-fumigated and nonfumigated mi-
croplots compared to untreated controls, and reduced
root galling in nonfumigated soil. However, the com-
bination did not suppress root galling or egg numbers.
Individually applied microbes increased lettuce head
weight in nonfumigated soil compared to untreated
controls, whereas the combination did not. The com-
bination therefore was not as effective as individual
treatments for increasing lettuce head weight or for
decreasing nematode populations. In a study with pot-
ted banana plants, S. costaricanus, B. thuringiensis, and P.
marquandii in combinations were generally not as effi-
cacious for nematode management as the organisms
applied individually against Radopholus similis and Heli-
cotylenchus multicinctus (Esnard et al., 1998).

Examples of combinations of biocontrol agents for manage-
ment of soilborne plant-pathogenic fungi. Combinations of
biocontrol agents have been tested for suppression of
soilborne fungal pathogens. As with the use of biocon-
trol agents for nematode management, some combina-
tions improved suppression of soilborne plant-
pathogenic fungi (Duffy et al., 1996; Duffy and Weller,
1995; Leeman et. al., 1996; Lemanceau and Alabou-
vette, 1991; Lemanceau et al., 1992; Park et al., 1988;
Pierson and Weller, 1994), while some combinations
did not provide any advantage (Dandurand and Knud-
sen, 1993; Hubbard et al., 1983; Minuto et al., 1995).
For example, cucumber seed treatments containing
combinations of two biocontrol bacteria provided sig-
nificantly greater suppression of cucumber seedling
pathogens in a field soil naturally infested with Pythium
and Fusarium spp. than was obtained with the individual
bacterial strains (Roberts et al., 1997).
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Impressive results have come from greenhouse trials
performed by Mao et al. (1998) evaluating the com-
bined application of T. virens G1-3 and B. cepacia Bc-F
for the control of seed and seedling diseases of tomato
caused by the plant-pathogenic fungi Rhizoctonia solani
and Pythium ultimum, alone or in combination with the
plant-pathogenic fungi Sclerotium vrolfsic and Fusarium
oxysporum f. sp. Ilycopersici. Greenhouse trials were also
performed with G1-3 and Bc-F for the control of R.
solani, P. ultimum, and S. rolfsii alone or in combination
with Phytophthora capsici on pepper. Tomato seeds
treated with G1-3 and Bc-F, individually and in combi-
nation, and sown in soil-less mix infested with the above
pathogens resulted in seedling stands comparable to
that of the noninfested controls. However, on pepper,
only seed treatments with the combination of G1-3 and
Bc-F resulted in stands similar to the noninfested con-
trols. Surviving tomato and pepper plants were trans-
planted into field plots infested with a variety of patho-
gens. At plant maturity, the combined G1-3 plus Bc-F
application resulted in values for fresh weight and dis-
ease severity on pepper, and fruit yield for tomato, that
were significantly better than individual applications of
these biocontrol agents or the pathogen check (Mao et
al., 1998). In this case, preparations containing G1-3
combined with Bc-F generally provided more effective
disease suppression than preparations containing the
individual applications.

In other studies, corn seeds treated with T. wirens
G1-3, B. cepacia Be-B, B. cepacia Bce-1, or G1-3 in combi-
nation with Bc-B or Be-1, were evaluated in a nonsterile
field soil artificially infested with several species of
Pythium and Fusarium. G1-3 in combination with B. ce-
pacia Bc-B provided significantly greater biocontrol
than all other seed treatments (Mao et al., 1996). In
field trials, only the combined application of G1-3 with
Bc-B provided significant disease control on corn in soil
artificially infested with several different species of
Pythium and Fusarium. The combination of T. virens G1-
21 with the bacterium B. cepacia Bc-F provided signifi-
cantly greater control of R. solani on cucumber than
G1-21 or Bc-F applied individually under very high lev-
els of disease pressure (Roberts and Lewis, unpubl.).
Interestingly, combinations of G1-21 with a second
strain of B. cepacia did not increase biocontrol activity.
Furthermore, combinations of G1-21 with other bacte-
ria, or preparations consisting only of combinations of
bacteria, were reduced in efficacy compared with the
biocontrol agents applied alone (Roberts and Lewis,
unpubl.).

Examples of combinations of biocontrol agents for manage-
ment of plant-parasitic nematodes and soilborne plant-
pathogenic fungi: Suppression of more than one plant
pest or pathogen would increase the value of an applied
biocontrol agent. As a consequence, some microbe
combinations have been tested for activity against plant-
pathogenic nematodes and fungi (Khan et al., 1997;
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Perveen et al., 1998; Siddiqui et al., 1999a, 1999b; Sid-
diqui and Mahmood, 1993, 1995a, 1995b, 1996b).
These studies often report enhanced activity with com-
bined microbes. For example, the beneficial fungi P.
lilacinus and Trichoderma harzianum were applied against
M. incognita and Fusarium solani on potted papaya in
steamed soil (Khan et al., 1997). Each biocontrol agent
applied alone was able to improve plant vigor, reduce
nematode numbers, and decrease incidence of root
rot. However, the combined application was even more
effective. In another study, pigeonpea was planted in
autoclaved soil and treated with the fungi 7. harzianum
(TH), V. chlamydosporium (VC), and Glomus mosseae
(GM) (Siddiqui and Mahmood, 1996b). Tested com-
binations were TH+GM, VC+GM, VC+TH, and
VC+TH+GM. The combinations enhanced activity
against the Helerodera cajani-Fusarium udum wilt disease
complex, compared with applications of individual bio-
control agents. Plant height and shoot dry weights were
increased (compared to application of individual
agents), numbers of females and cysts per root system
were decreased by all but VC+GM, ]2 populations were
reduced, and wilting indices decreased.

Ecological considerations: While some strain combina-
tions are beneficial for biocontrol, clearly not all com-
binations of strains result in significantly improved and
consistent disease suppression. Several authors have
suggested that for improved biocontrol performance to
occur, strains combined in preparations must be com-
patible (Baker, 1990; Janisiewicz, 1996; Janisiewicz and
Bors, 1995; Raaijmakers et al., 1995). More consider-
ation must be given to interactions among strains com-
bined in biocontrol preparations.

Almost all biocontrol interactions leading to disease
suppression can be placed into one or more of the
following general categories of mechanisms: antibiosis,
induced resistance of plants, competition for resources
such as nutrients, and predation/parasitism (Kerry,
1998; Larkin et al., 1998; Siddiqui and Mahmood, 1999;
Sikora and Hoffmann-Hergarten, 1993). The positive
effects resulting from the combination of some biocon-
trol agents, leading to more effective disease suppres-
sion, are likely the result of additive or synergistic ef-
fects of the combined mechanisms of disease suppres-
sion against the pathogen. The negative interactions
resulting in a reduction in biocontrol efficacy are likely
the result of these mechanisms of suppression being
directed at the companion biocontrol agent within the
preparation, in addition to being directed at the plant
pathogen.

Considerable potential exists for antagonism be-
tween the microbes combined in biocontrol prepara-
tions that may lead to decreased management perfor-
mance. Microbes combined in biocontrol preparations
are potentially antagonistic with each other through
parasitism and antibiosis. For example, nematophagous
fungi can exhibit predacious activity toward other fungi

as well as toward nematodes (Rosenheim et al., 1995).
Antibiotics such as phenazine-l-carboxylic acid, 2,4-
diacetylphloroglucinol, hydrogen cyanide, and other
metabolites contribute to the activity of many biocon-
trol agents (Barker and Koenning, 1998; Keel et al.,
1992; Pierson and Thomashow, 1992; Sikora and Hoff-
mann-Hergarten, 1993; Thomashow and Weller, 1988;
Vincent et al., 1991; Weller and Thomashow, 1993) but
also may be inhibitory to other biocontrol agents (Pier-
son and Weller, 1994). Evidence that antibiotics are
produced in the rhizosphere and are inhibitory to spe-
cific soil microbes comes from genetic studies with an-
tibiotic-producing biocontrol bacteria (Keel et al.,
1992; Thomashow and Weller, 1988; Vincent et al.,
1991). For example, Pseudomonas fluorescens RS111 was
strongly inhibited in vitro by Pseudomonas putida RES;
strain RE8 was not inhibited by strain RS111. This in-
hibition was due to a diffusible compound, possibly an
antibiotic, that was released into the agar medium.
Strain RS11la, a spontaneous mutant of strain RS111,
was less sensitive to inhibition by RE8 than RS111 in
vitro. Preparations containing incompatible strains
(RE8 and RS111) and compatible RE8 and RSI1la
strains were used for control of Fusarium wilt of radish.
The incompatible strain combination provided signifi-
cant disease suppression. However, this suppression was
similar to that obtained with treatments containing
strain RE8 or strain RS111 applied individually. In con-
trast, the compatible strain combination gave signifi-
cantly greater disease suppression than the pathogen
check, treatments containing the strains applied indi-
vidually, and the treatment containing the incompat-
ible strain combination (de Boer et al., 1997).
Antagonism between biocontrol agents within a par-
ticular biocontrol preparation may also arise due to
competition for limiting resources, such as nutrients, in
the rhizosphere. Competition has been defined as the
active demand in excess of the immediate supply of
material on the part of two or more organisms (Clark,
1965). The result is restricted population size or micro-
bial activity of one or more of the competitors (Paulitz,
1990). Several levels of competition for nutritional re-
sources may be at work in the rhizosphere when mul-
tiple biocontrol strains are added (e.g., competition be-
tween the biocontrol strains or competition between
biocontrol strains and the indigenous microflora and
fauna), which may include plant pathogens and pests
(Paulitz, 1990). Evidence that the rhizosphere environ-
ment is nutrientlimiting comes from the biocontrol
literature (Paulitz, 1990), where various approaches
have demonstrated that the rhizosphere can be limiting
in reduced carbon, nitrogen, or iron (Chen et al., 1988;
Kloepper et al., 1980; Loper, 1988; Weller et al., 1988).
Competition for nutrients among microbes resulting
in antagonism was shown by Wilson and Lindow
(1994a, 1994b). Their research analyzed the interac-
tions between bacterial biocontrol agents and bacterial



plant pathogens on leaf surfaces. Competition for nu-
trients between nonice-nucleating and ice-nucleating
strains of Pseudomonas syringae resulted in antagonism as
indicated by reduced colonization by ice-nucleating
strains of P. syringae (Lindow, 1983, 1985, 1987; Lindow
et al., 1983a, 1983b). Wilson and Lindow (1994b) de-
termined that coexistence of epiphytic bacteria was in-
versely correlated with the similarity in reduced carbon
utilization between the interacting strains. Strains with
high niche overlap were antagonistic with each other
through competition for limiting nutritional resources.
Conversely, coexistence of bacterial species on leaf sur-
faces was mediated through nutritional niche differen-
tiation, the utilization of different nutrients by coexist-
ing strains (Wilson and Lindow, 1994b). The work of
Wilson and Lindow suggests that biocontrol agents with
low nutritional niche overlap in the rhizosphere should
coexist and not impact the performance of other bio-
control agents. However, a predictive model relating
nutritional niche overlap between biocontrol agents
and biocontrol performance has not been formulated
or tested for the rhizosphere.

Coexistence among species within a community has
been shown to be mediated through mechanisms other
than nutritional niche differentiation, such as temporal
or spatial separation of species (Evans et al., 1989;
Niemela, 1993). Root and stem interiors represent ad-
ditional habitats, spatially distinct from the rhizo-
sphere, to be colonized by biocontrol agents. It may be
possible to decrease antagonism between biocontrol or-
ganisms by applying agents that occupy distinct spatial
niches (e.g., the rhizosphere and the internal portions
of plants) (Chao et al., 1986). However, there is a pau-
city of information on the importance of spatial sepa-
ration of biocontrol agents to biocontrol efficacy.
Clearly, work regarding compatibility to inhibitory mol-
ecules and nutritional, temporal, and spatial niche
overlap between biocontrol agents, and its relation to
biocontrol efficacy, is needed.

Conclusions: It is postulated that disease-suppressive
soils are the result of the concerted action of many
microorganisms (Alabouvette, 1986; Lemanceau and
Alabouvette, 1991; Schippers, 1992). Some nematode-
suppressive soils may be exceptions, with one or two
agents providing the beneficial activity, but application
of one microbe does not generally emulate natural sup-
pressiveness (Kerry and Bourne, 1996). Consequently,
the application of combinations of disease-suppressive
microbes may more closely mimic these natural sup-
pressive soils than application of individual antagonistic
microbes, and provide a more viable disease control
strategy (Duffy et al., 1996).

Studies with treatments containing combinations of
two or more antagonists have shown that strain combi-
nations can be capable of providing effective control of
a number of pathogens on multiple crop species. The
effectiveness of strain combinations cannot always be
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predicted from the individual performance of microbes
as biocontrol agents, in part because strains are often
combined without consideration of interactions among
biocontrol agents. More work needs to be done to mini-
mize the negative interactions while maintaining the
positive interactions resulting from the co-application
of biocontrol agents. It is hoped that, with a better
understanding of the ecological basis of the interac-
tions among microbes applied for biocontrol, levels of
performance associated with disease-suppressive soils
may be approximated.

From the commercialization perspective, production
and quality control difficulties are increased when two
or more microbes are involved. Specific formulations
for multiple microbes will be necessary, and the shelf
lives of more than one organism have to be ensured.
Development and production costs are potentially in-
creased, and registration is likely to be more difficult
and expensive. Clearly, the acceptance of biocontrol
combinations will depend on an increase in efficacy
and resulting economic benefit that justify the use of
combinations over application of individual microbes.
Currently, products containing more than one species
of microbe are not sold specifically as biocontrol agents
for plant-parasitic nematodes. However, combinations
are sold for management of plant-pathogenic fungi.
One such product is BINAB TF WP (BINAB Bio-
Innovation AB, Karlsborg, Sweden), composed of T.
harzianum and Trichoderma polysporum. Another ex-
ample is T. harzianum with Trichoderma viride, used for
the products Trichopel, Trichoject, Trichodowels, and
Trichoseal (Agrimm Technologies Ltd., Christchurch,
New Zealand). Formulations with combined organisms
can show improvements over applications of individual
microbes. For example, the formulations can be more
versatile, have superior activity against the pathogens,
or be active over a wider range in temperature and
other environmental conditions, e.g., moisture, pH,
soil type, etc. (Dodd, pers. comm.; Ricard, pers.
comm.).

Formulations containing multiple microbes could be
useful for management of nematodes and soilborne
plant-pathogenic fungi. Future work in this area should
include more microplot and field tests. It is also pos-
sible that some successful combinations have been ef-
ficacious because the total amount of inoculum was
higher (each microbe having been applied at the same
rate that was used for individual applications); contin-
ued work will determine whether this is the case. Inter-
actions among biocontrol agents should be studied in
detail, and knowledge of the ecology of the organisms
will help determine whether activity will be comple-
mentary. Formulations and delivery systems need to be
tailored to the multiple organisms involved. As these
and related areas continue to be addressed, the advan-
tages of biocontrol applications containing two or more
microbes may be realized.
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